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Abstract. The solutions of a renormalized BCS model are studied in two space dimensions
for s, p and d waves for finite-range separable potentials. The gap parameter, the critical
temperatureTc, the coherence lengthξ and the jump in specific heat atTc as a function of the
zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the
present model yields a smallξ and largeTc, appropriate for high-Tc cuprates. The specific heat,
penetration depth and thermal conductivity as functions of temperature show universal scaling
for p and d waves.

1. Introduction

At low temperature and in the weak-coupling limit, a collection of weakly interacting
electrons spontaneously form large overlapping Cooper pairs [1] leading to the microscopic
Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [2, 3]. For usual super-
conductors, the s-wave BCS theory yieldsξkF ∼ 1000 in agreement with experiments,
whereξ is the coherence length andkF the Fermi momentum. There has been renewed
interest in this problem since the discovery of high-Tc superconductors. The high-Tc
materials have a smallξ : ξkF ∼ 10 [4, 5]. In spite of much effort, the normal state
of the high-Tc superconductors has not been satisfactorily understood [6]. There are
controversies about the appropriate microscopic Hamiltonian, pairing mechanism and gap
parameter [4, 5, 7].

Many high-Tc superconductors have a conducting structure similar to a two-dimensional
layer of carriers [4, 7, 8], which suggests the use of two-dimensional models. Moreover,
there is evidence that the high-Tc cuprates have singlet d-wave Cooper pairs and that the
gap parameter has dx2−y2 symmetry in two dimensions [7]. Recent measurements of the
penetration depthλ(T ) [9] and superconducting specific heat at different temperaturesT [10]
and related theoretical analyses [11, 12] also support this point of view. According to the
isotropic s-wave BCS theory, asT → 0, both observables exhibit exponential dependence
on T [3, 12]. The experimental power-law dependence of these observables onT can be
explained by considering an anisotropic gap parameter with node(s) on the Fermi surface
for higher partial waves [11, 12]. It seems that some properties of the high-Tc cuprates can
be explained by the d-wave BCS equation in two dimensions for weak coupling. Yet there
has been no systematic study of the BCS equation for non-s waves in two dimensions.
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The BCS theory considersN electrons of spacingL, interacting via a weak potential
of short ranger0 such thatr0 � L andr0 � R whereR is the pair radius. When suitably
scaled, most properties of the system should be insensitive to the details of the potential and
be universal functions of the dimensionless variableL/R [13]. The usual BCS treatment
[2] employs a phonon-induced two-electron potential of moderate range. In this paper we
study the weak-coupling BCS problem in two dimensions for s, p and d waves with two
objectives in mind. The first objective is to identify the universal nature of the solution and
its relation to high-Tc superconductors. The second objective is to find out to what extent the
universal nature of the solution is modified in the presence of realistic finite-range (non-local
separable) potentials. Instead of solving the BCS equation for the lattice with appropriate
symmetry, we solved the equations for the continuum. This procedure should suffice for
present objectives.

In place of the phonon-induced BCS model we employ a renormalized BCS model with
a separable potential, which has certain advantages. The renormalized BCS model leads
to convergent results even in the absence of potential form factors or a momentum/energy
cut-off, as required in the standard BCS model. The original BCS model yields a linear
correlation betweenTc andTD, whereTD is the Debye temperature. This correlation was
fundamental in explaining the observed isotope effect for conventional superconductors. The
high-Tc materials exhibit an anomalously negligible isotope effect and a linear correlation
betweenTc andTF , whereTF is the Fermi temperature. This suggests a different interaction
for superconductivity in the high-Tc materials. The present renormalized model yields a
linear scaling betweenTc andTF . Because of this scaling withTF , unlike in the phonon-
induced BCS model, the presentTc can be large and appropriate for the high-Tc cuprates
in the weak-coupling region. The present model also produces an appropriateTc/TF ratio
and a smallξkF in the weak-coupling region in accord with recent experiments [8] on
high-Tc cuprates. In spite of these results, we are aware that there are controversies in the
description of the high-Tc materials—for example, as regards the microscopic Hamiltonian
and the pairing mechanism. Also, the normal state away fromTc seems to be very different
from a standard Fermi liquid. However, we find that there are certain characteristics of
these high-Tc materials which can be studied within the present renormalized mean-field
BCS model based on the standard Fermi liquid theory.

Previously, there have been studies of this problem in two dimensions in terms of two-
body binding in vacuum and Cooper pair binding employing short- and zero-range potentials
[4, 5, 14]. Such studies have not fully revealed the universal nature of the solution. In
the present paper we employ the zero-temperature condensation energy per particle,1U ,
of the BCS condensate as the reference variable for studying the BCS problem. As the
condensation energy increases, one passes from weak to medium coupling. Also,1U is
a physical observable and is the appropriate reference variable, as we shall see. In this
paper we calculate the zero-temperature gap parameter1(0), the critical temperatureTc
and the specific heat per particleCs(Tc) for all of the partial waves (characterized by the
angular momentuml) and the zero-temperature pair size for the s wave. We find that these
observables obey robust universal scaling as functions of1U , valid over several decades
in the weak-to-medium-coupling region, independently of the potential range parameter.

Here, we also calculate the temperature dependences of different quantities, such as
the gap parameter1(T ), Cs(T ), λ(T ) and the thermal conductivityK(T ) for T < Tc.
Of these, theT -dependences ofCs(T ), λ(T ) and K(T ) are especially interesting. For
isotropic s waves, the BCS theory yields an exponential dependence on temperature as
T → 0 for these observables independently of the space dimension [3, 12]. The observed
power-law dependence of some of these observables can be explained with an anisotropic
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gap parameter for non-s waves with nodes on the Fermi surface. We find a universal power-
law dependence in both cases for non-s waves independently of the range of the potential.
For l 6= 0 we findCs(T ) ≈ 2Cn(Tc)(T /Tc)2 andKs(T ) ≈ Kn(T )(T /Tc)

1.2 to be valid
for almost the entire range of temperature. The subscriptsn and s refer to normal and
superconducting states, respectively. Similar dependences were predicted from an analysis
of experimental data [10] as well as from a calculation based on the Eliashberg equation
[11]. In order to detect the anisotropy in1(T ) it is appropriate to consider the function
1λ ≡ (λ(T )− λ(0))/λ(0) [12]. We find that for smallT it behaves as1λ ∼ (T /Tc)1.3. A
similar power-law dependence was conjectured earlier [12].

From the weak-coupling BCS equation we establish the following relations analytically:
21(0)/Tc ≈ 3.528 (3.026),1(0) = 2

√
1U (2

√
1U ), Tc ≈ 1.134

√
1U (1.322

√
1U ),

1C/Cn(Tc) ≈ 1.43 (1.05),Cs(Tc) ≈ 9.065
√
1U (8.915

√
1U ), 1U/Un(Tc) ≈ 0.473

(0.348), for l = 0 (l 6= 0). Here1C is the jump in specific heat atT = Tc and C
(U ) is the specific heat (internal energy) per particle.

The plan of the paper is as follows. In section 2 we present the renormalized BCS
model. In section 3 we present an account of our numerical study. Finally, in section 4 we
present a brief summary of our findings.

2. The renormalized BCS model

The two-body problem and the Cooper and BCS models all exhibit ultraviolet divergences
for zero-range potentials and require regularization or renormalization to produce finite
results [4]. The usual BCS model employs a cut-off regularization (the Debye cut-off) for
obtaining finite observables. In momentum space, the standard BCS model interaction is
taken to be constant for momenta between 2m(EF −ED)/h̄2 and 2m(EF +ED)/h̄2 and zero
elsewhere withED (EF ) the Debye (Fermi) energy. This implies a moderate range of the
interaction. This potential is a physically motivated phonon-induced electron–electron one
[2]. The present renormalized BCS equation may lead to a well-defined solution without
requiring a cut-off even in the absence of potential form factors. The present model with a
finite-range potential also leads to a well-defined mathematical problem.

We consider a two-body system, with each body of massm, in the centre-of-mass frame
[4]. The single- (two-) particle energy is given byεq = h̄2q2/2m (2εq = h̄2q2/2m), where
q is the wavenumber. We consider a purely attractive short-range separable potential in
terms of the partial wavel:

Vpq = −V0clgplgql cos(lθ) (1)

whereθ is the angle between the vectorsp andq and cl = 1 (2) for l = 0 (l 6= 0) as in
reference [15]. Heregpl andgql are potential form factors andV0 is the potential strength.
The potentialVpq is the effective electron–electron potential in the superconductor in the
presence of lattice and other electrons. The Schrödinger equation in this case leads to the
following condition for a two-particle bound state in vacuum with bindingB2:

V −1
0 = cl

∑
q

g2
ql cos2(lθ)(B2+ 2εq)

−1 (2)

where θ is the angle of the vectorq and εq = h̄2q2/2m with m the mass. In order to
simplify the notation, the triviall-dependence of many quantities, such asVpq andB2, is
suppressed.

For the attractive potential (2), the existence of two electrons on the top of the full Fermi
sea at zero temperature shows pairing instability. Singlet (triplet) pairing is assumed to take
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place in even (odd) partial waves. The Cooper pair problem for two electrons above the
filled Fermi sea for this potential is given by [1, 2]V −1

0 = cl
∑

q>1 g
2
ql cos2(lθ)(2εq−2Ê)−1,

with the Cooper bindingBc ≡ 2− 2Ê. Using (2), the Cooper problem is written as∑
q

g2
ql cos2(lθ)(B2+ 2εq)

−1−
∑
q>1

g2
ql cos2(lθ)(2εq − 2Ê)−1 = 0. (3)

At a finite T , one has the following BCS and number equations:

1p = −
∑
q

Vpq
1q

2Eq
tanh

Eq

2T
(4)

N =
∑
q

[
1− εq − µ

Eq
tanh

Eq

2T

]
(5)

with Eq = [(εq − µ)2 + |1q|2]1/2, where1q is the gap function. Unless the units of the
variables are explicitly mentioned, in (2)–(5) and in the following, all energy/momentum
variables are expressed in units ofEF , such thatµ ≡ µ/EF , T ≡ T/TF , q ≡ q/kF ,
Eq ≡ Eq/EF etc, whereµ is the chemical potential. Here1q has the following anisotropic
form: 1q ≡ gql10

√
cl cos(lθ) where10 andgql are dimensionless. The usual BCS gap is

defined by1(T ) = gq(=1)l10, which is the root mean square average of1q on the Fermi
surface. Using the above form of1q, the BCS equation (4) can be written as

1

V0
= cl

∑
q

g2
ql cos2(lθ)

1

2Eq
tanh

Eq

2T
. (6)

Now (2) and (6) lead to∑
q

g2
ql cos2(lθ)

[
2

2εq + B2
− 1

Eq
tanh

Eq

2T

]
= 0. (7)

The summation is evaluated according to∑
q

→ N

4π

∫ ∫
dεq dθ ≡ N

4π

∫ ∞
0

dεq

∫ 2π

0
dθ (8)

whereN is the number of electrons. As in the standard BCS model, we have a constant
density of states in (8) but now with the generalization to include the angular dependence.
With the help of (8), equations (5) and (7) can be explicitly written as∫ ∫

dεq dθ

[
1− εq − µ

Eq
tanh

Eq

2T

]
= 4π (9)∫ ∫

dεq dθ g2
ql cos2(lθ)

[
2

2εq + B2
− 1

Eq
tanh

Eq

2T

]
= 0 (10)

respectively. In terms of Cooper-pair binding, equation (10) can be rewritten as∫ 2π

0
dθ cos2(lθ)

[ ∫ ∞
1

dεq
g2
ql

εq − Ê
−
∫ ∞

0
dεq

g2
ql

Eq
tanh

Eq

2T

]
= 0. (11)

Even in the absence of the potential form factorsgpl = 1, equations (9), (10) and (11)
are well defined without any energy/momentum cut-off, though each part of the integral
in these equations diverges separately. This is why this model is termed ‘renormalized’.
Potential (1) withgpl = 1 is the zero-range delta-function potential. The standard BCS
model uses essentially the above potential with an energy/momentum cut-off for obtaining
convergence. In the renormalized equation (10), the usual energy/momentum cut-off



Universal scaling in BCS superconductivity 139

and the potential strengthV0 have been eliminated in favour of the two-body binding
B2. Recently, the role of renormalization in non-relativistic quantum mechanics has been
discussed [16].

Equation (11) has the following analytic solutions for the s-wave zero-range potential
(gq0 = 1) in the weak-coupling limit (µ = 1). At T = 0, 1(0) = √2Bc. At T = Tc
(1 = 0), we haveTc = exp(γ )

√
2Bc/π ≈ 0.8

√
Bc whereγ = 0.577 22. . .. The standard

BCS model yields in this caseTc/TD = exp(γ )
√

2Bc/π
√
TD ≈ 0.8

√
Bc/TD whereTD

is the Debye temperature. To illustrate the advantage of the renormalized model, let us
consider a specific example withTD = 300 K, TF = 3000 K andBc = 10 K. We take
Bc < 10 K as defining the weak-coupling region. WithBc = 10 K, the standard BCS model
yields Tc = 44 K, whereas the present renormalized model yieldsTc = 138 K. Hence for
the same coupling, the renormalized model leads to an enhancedTc. In the standard BCS
model one has to have a much largerBc, clearly outside the weak-coupling region, in order
to haveTc > 100 K.

The universal ratio 21(0)/Tc = 2π/exp(γ ) ≈ 3.528 remains unchanged for the s wave
in three dimensions as well as for the trivial case of anisotropic pairing (∼ exp(ilθ)) in
two dimensions forl 6= 0 [14]. In reference [14] we essentially changed the potential
form factors without introducing any explicit angular dependence in the BCS and number
equations and found that the universal nature of the solution was unchanged on making such
a change. Hence we expect to extract certain universal properties of (10) analytically for
l 6= 0 by employing the correct angular distribution and no potential form factors (gql = 1).

Next we study (10) analytically for weak coupling (µ = 1,1� 1) and forgql = 1. At
T = 0, equation (10) can be integrated to yield∫ 2π

0
dθ cos2(lθ) ln

[1+12(0)cl cos2(lθ)]1/2− 1

B2
= 0

which for1(0)� 1 andl 6= 0 reduces to

ln
cl1

2(0)

2B2
= − 1

π

∫ 2π

0
dθ cos2(lθ) ln cos2(lθ) ≡ 0.3863

or 1(0) ≈ 1.213
√
B2. At T = Tc, we again haveTc = exp(γ )

√
2B2/π , so we have the

following new universal constant forl 6= 0: 21(0)/Tc ≈ 3.026.
The condensation energy per particle atT = 0 is defined by [3]

1U ≡ |Us − Un| = 1

N

∑
q (q<1)

2ζq − 1

N

∑
q

(
ζq −

ζ 2
q

Eq
− 12

q

2Eq

)
whereζq = (εq − µ). This can be evaluated straightforwardly to lead to [3]

1U = 1

8π

∫ 2π

0
cl1

2(0) cos2(lθ) dθ

which yields1(0) = 2
√
1U for all l. Using the universal relation between1(0) and

Tc given above, one hasTc ≈ 1.134
√
1U (1.322

√
1U) for l = 0 (l 6= 0). For all l,

Un(Tc) = π2T 2
c /6, so1U/Un(Tc) ≈ 0.473 (0.348) forl = 0 (l 6= 0).

The superconducting specific heat per particle is given by

Cs = 2

NT 2

∑
q

fq(1− fq)
(
E2
q −

1

2
T

d12
q

dT

)
(12)
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Figure 1. Plots of the specific heatCs(Tc) (dashed line),Tc (dotted line) and gap parameter
1(0) (chain line) for s, p and d waves, and the s-wave pair radiusξ2 (solid line) versus the
zero-temperature condensation energy per particle1U for different potential parameters forα
between 1 and∞. For the first two variables there are two distinct lines: the upper one is for
p and d waves and the lower one is for s waves.

wherefq = 1/(1+exp(Eq/T )). The normal specific heatCn is given by (12) with1q = 0.
The jump in specific heat per particle atT = Tc (1(Tc) = 0), 1C ≡ [Cs − Cn]Tc , is given
by [3]

1C = − 1

NTc

∑
q

[
fq(1− fq)

d12
q

dT

]
Tc

. (13)

In the special case wheregql = 1, the radial integral in (13) can be evaluated as in reference
[3] and we get

1C = −
∫
cl

dεq dθ

4πTc

[
fq(1− fq)d12(T )

dT

]
Tc

cos2(lθ). (14)

This leads to [3]1C = −(1/2)[d12(T )/dT ]T=Tc for all l. In a systematic (numerical)
study we find1(T )/1(0) = B(1 − T/Tc)1/2 valid for T ≈ Tc, with B ≈ 1.74 (1.70)
for l = 0 (l 6= 0). Using the value ofB and the universal ratio 21(0)/Tc, we obtain
1C/Cn(Tc) ≈ 1.43 (1.00) forl = 0 (l 6= 0), whereCn(T ) = π2T/3. Consequently,
Cs(Tc)/

√
1U ≈ 9.065 (8.915) andTcCn(Tc)/1U ≈ 4.229 (5.749) forl = 0 (l 6= 0).

The penetration depthλ is defined by [3]

λ−2(T ) = λ−2(0)

[
1− 2

NT

∑
q

fq(1− fq)
]
. (15)

The thermal conductivity ratioKs(T )/Kn(T ) is defined by [17]

Ks(T )

Kn(T )
=
(∑

q

ζqEqfq(1− fq)
)/(∑

q

ζ 2
q fq(1− fq)

)
. (16)

The denominator of (16) essentially corresponds to the normal-state thermal conductivity
with the BCS gap set equal to zero.
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Figure 2. The specific heatCs(T )/Cn(Tc) versusT/Tc for s (dashed line), p and d (solid
line) waves and potential parameters forα between 1 and∞. The analytic fit (chain line) of
Cs(T )/Cn(Tc) = 2(T /Tc)2 to p and d waves is also shown.

The dimensionless s-wave pair radius defined byξ2 = 〈ψq |r2|ψq〉/〈ψq |ψq〉 with the
pair wave functionψq = gql1/(2Eq) can be evaluated by usingr2 = −∇2

q . In the weak-
coupling limit, the zero-range analytic result of reference [4] leads toξ2 = 0.51−2(0) =
0.125(1U)−1.

3. Numerical results

We solve the coupled equations (9) and (10) numerically using the dimensionless form
factors gql = (εq)

l/2[α/(εq + α)](l+1)/2 with the correct threshold behaviour for small
momenta, whereα is the range parameter. Following reference [3] we calculate the
dimensionless gap parameter1(0) = gq(=1)l1, Tc, Cs(Tc), the s-wave pair radiusξ2 at
T = 0 as well as1(T ), λ(T ) andC(T ) for different coupling. In figure 1 we plot1(0),
Tc, Cs(Tc) andξ2 at T = 0 versus1U , and find universal scalings. The calculations were
repeated for different potential rangesα. We variedα from 1 to∞ and found figure 1 to
be insensitive to this variation for each partial wave. For p and d waves, equations (9) and
(10) diverge forα → ∞ and calculations were performed forα = 1 to 10. The increase
in 1U of figure 1 corresponds to an increase in coupling. We could express this change in
coupling in terms of a change inB2 or in the Cooper pair binding and plot the variables
of figure 1 in terms of these bindings as in reference [14]. Then each value of the range
parameter leads to a distinct curve. However, if we express the variation in coupling in
terms of a variation of an observable of the superconductor, such as1U or Tc, universal
potential-independent scalings are obtained. In each case the exponent and the prefactor of
each scaling relation are in excellent agreement with the analytic relation obtained above
without form factors.

Tc should not arbitrarily increase with coupling as figure 1 may imply. With increased
coupling the electron pairs should form composite bosons which may undergo a phase
transition under the action of a residual interaction. According to a numerical study this
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transition happens at a temperature of 0.1 [18]. This is why theTc-curve in figure 1 has been
plotted up to aboutTc = 0.1. For a very large class of two-dimensional high-Tc materials,
Tc has been estimated to be about 0.05 [8], which corresponds, forgql = 1, toB2 = 0.004.
This small value ofB2 is in the weak-coupling region where the universality of the present
study should hold. The corresponding dimensionless pair radius (ξ2 ∼ 80) atTc = 0.05, as
obtained from figure 1, is in agreement with experimental analysis [8]. Hence, the present
study is relevant for these high-Tc materials.

Figure 3. The penetration depth1λ(T ) versusT/Tc for s (dashed line), p and d (solid line)
waves and potential parameters forα between 1 and∞.

Next we studied the temperature dependence of1(T ), Cs(T ), λ(T ) and K(T ) for
T < Tc. For BCS superconductors, these observables have an exponential dependence
on T asT → 0 [3, 12]. The two-dimensional high-Tc superconductors have a power-law
dependence onT . In figures 2, 3 and 4 we plotCs(T )/Cn(Tc),1λ(T ) ≡ (λ(T )−λ(0))/λ(0)
andKs(T )/Kn(T ) versusT/Tc, respectively. In these figures we find a universal power-
law dependence, essentially independent of the potential range, forl 6= 0. We find
Cs(T ) ≈ 2Cn(Tc)(T /Tc)2, Ks(T ) ≈ 2Kn(T )(T /Tc)1.2 for almost the entire temperature
range and1λ(T )/λ(0) ∼ (T /Tc)

1.3 for small T/Tc. The T 2-dependence ofCs(T ) was
found in a theoretical study of the Eliashberg equation [11] and in an analysis of the
experimental data [10]. The power-law dependence ofλ(T ) on T was also conjectured
earlier [12]. The gap function1(T ) has essentially the same universal behaviour as for the
s wave [3].

4. Summary

Scalings are established among1(0), Tc, Cs(Tc) andξ2, as functions of1U , independently
of the potential range of the s, p and d waves, from a study of a renormalized BCS equation in
two dimensions. The present renormalized model yields a largeTc and a smallξ appropriate
for high-Tc superconductors. TheT -dependences of1λ(T ), Cs(T ) andKs(T ) below Tc
for non-s waves show power-law scalings appropriate for high-Tc materials at low energies.
No power-lawT -dependence is found for the s wave for1λ(T ) andCs(T ). Calculations
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Figure 4. The thermal conductivity ratioKs(T )/Kn(T ) versusT/Tc for s (dashed line), p and
d (solid line) waves and potential parameters forα between 1 and∞.

performed with cos(lθ) and sin(lθ) angular dependences yielded identical results. Although
we have used a separable potential, in view of the universal nature of the study we do not
believe the present conclusions to be so peculiar as to have no general validity. We have
repeated the s-wave calculations with a local Yukawa potential and found the results to be
independent of the potential in the weak-coupling region. This is also in agreement with a
suggestion made by Leggett [13]. Although there are controversies about the microscopic
formulation for high-Tc superconductors, it seems that the two-dimensional d-wave BCS
equation for weak coupling can be used to explain some of their universal scalings. A
similar study of universality has recently been performed in three dimensions employing the
renormalized BCS equation [19], which also leads to an enhancedTc in the weak-coupling
limit.
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